
From the equivalent wood section shown
Aw=6(10)=60 in2
As=80(0.5)=40 in2
A=Aw+As=100 in2
Location of NA from the top of the beam
Aˉy=Awyw+Asys
100ˉy=60(5)+40(10.25)
ˉy=7.1 in
Moment of inertia of each section
Ig=bd312
Igw=6(103)12=500 in4
Igs=80(0.53)12=56 in4
Moment of inertia about NA
I=Σ(Ig+Ad2)
INA=[Igw+Aw(ˉy−5)2]+[Igs+As(10.25−ˉy)2]
INA=[500+60(7.1−5)2]+[56+40(10.25−7.1)2]
INA=34873 in4=1162.33 in4
Maximum moment that the beam can carry
fb=MyI
M=fbIy
Based on strength of wood (y=ˉy=7.1 in)
Mw=1200(34873)7.1
Mw=196450.70 lb⋅in
Mw=16370.89 lb⋅ft
Based on strength of wood (y=10.5−ˉy=3.4 in)
Ms=1800020×348733.4
Ms=307676.47 lb⋅in
Ms=25639.70 lb⋅ft
For safe value of M, use the smaller of the two
M=16370.89 lb⋅ft
Safe value of P at the midspan that beam can carry
M=PL4
16370.89=P(18)4
P=3637.98 lb answer