**Problem**

A meteorologist is inflating a spherical balloon with a helium gas. If the radius of a balloon is changing at a rate of 1.5 cm/sec., express the volume *V* of the balloon as a function of time *t* (in seconds). Hint: Use composite function relationship *V*_{sphere} = 4/3 π*r*^{3} as a function of *x* (radius), and *x* (radius) as a function of *t* (time).

A. V(t) = 5/2 πt^{3} |
C. V(t) = 9/2 πt^{3} |

B. V(t) = 7/2 πt^{3} |
D. V(t) = 3/2 πt^{3} |

- Read more about Volume of Inflating Spherical Balloon as a Function of Time
- Log in or register to post comments
- 1613 reads

**Problem**

A farmer owned a square field measuring exactly 2261 m on each side. 1898 m from one corner and 1009 m from an adjacent corner stands Narra tree. A neighbor offered to purchase a triangular portion of the field stipulating that a fence should be erected in a straight line from one side of the field to an adjacent side so that the Narra tree was part of the fence. The farmer accepted the offer but made sure that the triangular portion was a minimum area. What was the area of the field the neighbor received and how long was the fence? Hint: Use the Cosine Law.

A. A = 972,325 m^{2} and L = 2,236 m |

B. A = 950,160 m^{2} and L = 2,122 m |

C. A = 946,350 m^{2} and L = 2,495 m |

D. A = 939,120 m^{2} and L = 2,018 m |

- Read more about Smallest Triangular Portion From A Square Lot
- Log in or register to post comments
- 1826 reads

## Problem 920 | Additional Centroidal Load to Eliminate Tensile Stress Anywhere Over the Cross Section

**Problem 920**

A compressive load *P* = 100 kN is applied, as shown in Fig. 9-8a, at a point 70 mm to the left and 30 mm above the centroid of a rectangular section for which *h* = 300 mm and *b* = 250 mm. What additional load, acting normal to the cross section at its centroid, will eliminate tensile stress anywhere over the cross section?

- Read more about Problem 920 | Additional Centroidal Load to Eliminate Tensile Stress Anywhere Over the Cross Section
- Log in or register to post comments
- 3448 reads

## Problem 919 | Additional Axial Compression Load for the Section to Carry No Tensile Stress

- Read more about Problem 919 | Additional Axial Compression Load for the Section to Carry No Tensile Stress
- Log in or register to post comments
- 2461 reads

## Problem 918 | Stress at Each Corner of Eccentrically Loaded Rectangular Section

**Problem 918**

A compressive load *P* = 12 kips is applied, as in Fig. 9-8a, at a point 1 in. to the right and 2 in. above the centroid of a rectangular section for which *h* = 10 in. and *b* = 6 in. Compute the stress at each corner and the location of the neutral axis. Illustrate the answers with a sketch.

- Read more about Problem 918 | Stress at Each Corner of Eccentrically Loaded Rectangular Section
- Log in or register to post comments
- 3651 reads

## Eccentrically Loaded Short Compression Member

- Read more about Eccentrically Loaded Short Compression Member
- Log in or register to post comments
- 6134 reads

**Problem**

A rectangular waterfront lot has a perimeter of 1000 feet. To create a sense of privacy, the lot owner decides to fence along three sides excluding the sides that fronts the water. An expensive fencing along the lot’s front length costs Php25 per foot, and an inexpensive fencing along two side widths costs only Php5 per foot. The total cost of the fencing along all three sides comes to Php9500. What is the lot’s dimensions?

A. 300 feet by 100 feet | C. 400 feet by 200 feet |

B. 400 feet by 100 feet | D. 300 feet by 200 feet |

- Read more about Dimensions of the Lot for a Given Cost of Fencing
- Log in or register to post comments
- 870 reads

**Problem**

A salesperson earns \$600 per month plus a commission of 20% of sales. Find the minimum amount of sales needed to receive a total income of at least \$1500 per month.

A. \$1500 | C. \$4500 |

B. \$3500 | D. \$2500 |

- Read more about Amount of Sales Needed to Receive the Desired Monthly Income
- Log in or register to post comments
- 514 reads

**Problem**

The tide in Bay of Fundy rises and falls every 13 hours. The depth of the water at a certain point in the bay is modeled by a function *d* = 5 sin (2π/13)*t* + 9, where *t* is time in hours and *d* is depth in meters. Find the depth at *t* = 13/4 (high tide) and *t* = 39/4 (low tide).

- The depth of the high tide is 15 meters and the depth of the low tide is 3 meters.
- The depth of the high tide is 16 meters and the depth of the low tide is 2 meters.
- The depth of the high tide is 14 meters and the depth of the low tide is 4 meters.
- The depth of the high tide is 17 meters and the depth of the low tide is 1 meter.

- Read more about The Tide in Bay of Fundy: The Depths of High and Low Tides
- Log in or register to post comments
- 580 reads

**Problem**

The number of hours daylight, *D*(*t*) at a particular time of the year can be approximated by

for *t* days and *t* = 0 corresponding to January 1. The constant *K* determines the total variation in day length and depends on the latitude of the locale. When is the day length the longest, assuming that it is NOT a leap year?

A. December 20 | C. June 20 |

B. June 19 | D. December 19 |

- Read more about Longest Day of the Year: Summer Solstice
- Log in or register to post comments
- 425 reads