Solution to Problem 325 Torsion

Problem 325
The two steel shaft shown in Fig. P-325, each with one end built into a rigid support have flanges rigidly attached to their free ends. The shafts are to be bolted together at their flanges. However, initially there is a 6° mismatch in the location of the bolt holes as shown in the figure. Determine the maximum shearing stress in each shaft after the shafts are bolted together. Use G = 12 × 106 psi and neglect deformations of the bolts and flanges.
 

Shafts connected through flanges

 

Solution to Problem 324 Torsion

Problem 324
The compound shaft shown in Fig. P-324 is attached to rigid supports. For the bronze segment AB, the maximum shearing stress is limited to 8000 psi and for the steel segment BC, it is limited to 12 ksi. Determine the diameters of each segment so that each material will be simultaneously stressed to its permissible limit when a torque T = 12 kip·ft is applied. For bronze, G = 6 × 106 psi and for steel, G = 12 × 106 psi.
 

Solution to Problem 323 Torsion

Problem 323
A shaft composed of segments AC, CD, and DB is fastened to rigid supports and loaded as shown in Fig. P-323. For bronze, G = 35 GPa; aluminum, G = 28 GPa, and for steel, G = 83 GPa. Determine the maximum shearing stress developed in each segment.
 

Solution to Problem 322 Torsion

Problem 322
A solid steel shaft is loaded as shown in Fig. P-322. Using G = 83 GPa, determine the required diameter of the shaft if the shearing stress is limited to 60 MPa and the angle of rotation at the free end is not to exceed 4 deg.
 

Solution to Problem 321 Torsion

Problem 321
A torque T is applied, as shown in Fig. P-321, to a solid shaft with built-in ends. Prove that the resisting torques at the walls are T1 = Tb/L and T2 = Ta/L. How would these values be changed if the shaft were hollow?
 

Figure P-321

 

Solution to Problem 320 Torsion

Problem 320
In Prob. 319, determine the ratio of lengths b/a so that each material will be stressed to its permissible limit. What torque T is required?
 

Solution to Problem 319 Torsion

Problem 319
The compound shaft shown in Fig. P-319 is attached to rigid supports. For the bronze segment AB, the diameter is 75 mm, τ ≤ 60 MPa, and G = 35 GPa. For the steel segment BC, the diameter is 50 mm, τ ≤ 80 MPa, and G = 83 GPa. If a = 2 m and b = 1.5 m, compute the maximum torque T that can be applied.
 

Derivation of the Double Angle Formulas

The Double Angle Formulas can be derived from Sum of Two Angles listed below:
$\sin (A + B) = \sin A \, \cos B + \cos A \, \sin B$   →   Equation (1)

$\cos (A + B) = \cos A \, \cos B - \sin A \, \sin B$   →   Equation (2)

$\tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \, \tan B}$   →   Equation (3)
 

Solution to Problem 318 Torsion

Problem 318
A solid aluminum shaft 2 in. in diameter is subjected to two torques as shown in Fig. P-318. Determine the maximum shearing stress in each segment and the angle of rotation of the free end. Use G = 4 × 106 psi.
 

Solution to Problem 317 Torsion

Problem 317
A hollow bronze shaft of 3 in. outer diameter and 2 in. inner diameter is slipped over a solid steel shaft 2 in. in diameter and of the same length as the hollow shaft. The two shafts are then fastened rigidly together at their ends. For bronze, G = 6 × 106 psi, and for steel, G = 12 × 106 psi. What torque can be applied to the composite shaft without exceeding a shearing stress of 8000 psi in the bronze or 12 ksi in the steel?
 

Pages

Subscribe to MATHalino RSS